USING MACHINE LEARNING OPERATORS FOR RASTER AND FEATURE CLASSIFICATION
Contents

Using This Manual ... 1

Section 1: Classification using Machine Learning Operators ... 3
 Exercise 1: Feature Classification ... 4
 Exercise 2: Raster Classification ... 16

About Us .. 23

Copyright and Terms of Use ... 24
Using This Manual

This manual contains step-by-step instructions on how to perform certain processes. You should be aware that each exercise provides a single path through the application's tools. In most cases, there are various ways to maximize tool usage, depending on the individual project.

This exercise manual is provided to the student, along with all images used by the instructor. Copies of the presentation slides are available upon request. This provides the capability for recreating the processes performed in class at a later date, as well as the key points on any theory involved.

Exercise Conventions

Section Title Page States the objective of the exercises and lists the application tools to be used within the various tasks.

Exercise Tasks Each exercise is split into a set of tasks. After the course, these tasks will help you locate within the manual where you performed a certain set of steps.

Questions The instructor may quiz and/or review with you, following each exercise.

Notational Conventions

Bold Text Any text that is bold indicates buttons, tabs, group names, dialogs, and field names that are visible in the workspace.

Monospace Text Any text that is monospace indicates a file name, text entered by you, or code such as HTML, XML, JavaScript.

Graphics To help you locate buttons and objects used in the exercises, the button icons will be next to the button name in the text.

Diagrams Optional diagrams can show you how to use some of the application's tools.

This is a tip, describing a different way you can enter information into the software or giving relevant information about the software.
This is a reference book, listing an external location (website, Help document) where you can read or see more information.
Section 1: Classification using Machine Learning Operators

Section Objective

Learn how to build spatial models that use machine learning operators to do raster and feature classification.

Tools Used

2D Viewer
The main “map display” panel used in ERDAS IMAGINE to display and interact with imagery, vectors, point clouds, annotation, etc.

Spatial Model Editor
The IMAGINE Spatial Modeler provides you with hundreds of functions, algorithms and analytical routines that can easily be chained together into models that solve complex Geospatial problems.
Exercise 1: Feature Classification

Objective
Students will gain an understanding of the process involved in performing features classification with machine learning operators. This includes:

- Preparing the training data
- Initializing the machine learning algorithm
- Performing the classification

Task 1: Explore the input dataset

In this task, we will get familiar with the data we will use for the exercise.

1. Start ERDAS IMAGINE.
2. Click File > Open > Raster Layer. Browse to the data directory.
3. Select land_cover.img. Click OK.
4. You may use Fit to Screen, Zoom and Roam through the image to get a sense of the image contents.
5. Click File > Open > Vector Layer. Browse to the data directory.
6. Select unclassified_land_cover_segments.shp. Click OK.
 This shape file is generated from the land cover image by performing FLS segmentation on it.
7. Click File > New > 2D View to start a new 2D viewer.
8. Click File > Open > Raster Layer. Browse to the data directory.
9. Select land_cover.img. Click OK.
10. Select land_cover_training_data.shp. Click OK.
11. Right click on the shapefile name in the Contents folder and select Display Attribute Table.
 Let’s style the shapefile display by its Name attribute.
12. Click on the Style tab of the ribbon interface, then click on Unique Value button from the Categorization group.
13. Select Name attribute name from the Unique Value dialog to specify the attribute to be used for generating symbology.
 This data is a subset of the shapefile generated by FLS segmentation. The polygons in this shapefile have their land cover type assigned manually. We will use this subset shape file as our training data to classify the shapefile generated by the FLS segmentation.
Task 2: Prepare the training dataset

We have to decide which attributes of the training data to use to train the machine learning algorithm that will be used for the classification.

Since the polygons in the shapefile are derived from the raster data based on radiometric information, we will use radiometric information (mean and standard deviation) of the raster image contained within each polygon as the training attribute.

Let’s build a spatial model that will generate a feature that will have these information as its attribute.

1. Click File > Close > Close All Views to close all viewers.
2. Click File > New > Spatial Model Editor to open a new Spatial Model Editor window.
3. In the Operators panel, scroll down to the Input category and expand it. Select the Features Input operator and drag it onto the left side of the Editor.
4. Drag Raster Input operator from the Input category in the Operators panel into the Editor.
5. Drag Raster Statistics Per Features from the Zonal category in the Operators panel into the Editor.
6. Drag Features Output operator from the Output category in the Operators panel into the Editor.
7. Click on the Raster Statistics Per Features operator and in the Properties panel check on the Show column for ComputeMean and ComputeStdDev port.
Mean is computed by default (so is set to true), while standard deviation is not computed by default. Double click on the **ComputeStdDev** port and check the **ComputeStdDev** on.

8. Connect the various operators in the Editor as shown below.

![Diagram of connected operators](image)

9. Click **File > Save > Spatial Model**. Name the model **Data_prep.gmdx** and click **OK**.

10. In the **Spatial Modeler** tab, click the **Run** button.

 The model runs, creating a shapefile output that has the computed metrics as its attributes

11. Click **File > Close > Close All Views** to close all viewers.

12. Click **File > New > 2D View** to start a new 2D viewer.

13. Click **File > Open > Vector Layer**. Browse to the data directory.

14. Select **land_cover_training_data_w_attributes.shp**. Click **OK**.

15. Right click on the shapefile name in the Contents folder and select **Display Attribute Table**. Let's style the shapefile display by its **Name** attribute.
Exercise 1: Feature Classification

We have now created a shape file that has mean and standard deviation (texture) values for the polygons representing the various land cover types. Note that the Mean and StdDev values are generated per band.

Task 3: Prepare the data to be classified

The data to be classified also needs to have the same attributes that were used for training the algorithm. So we will generate Per band Mean and StdDev values for the segments of the data to be classified.

1. Click File > Close > Close All Views to close all viewers.
2. Click File > New > Spatial Model Editor to open a new Spatial Model Editor window.
3. Click the File > Open > Open Spatial Model. The Select Spatial Model dialog opens.
4. Navigate to the data directory and click on Data_prep.gmdx to highlight it in the File Chooser.
5. Click OK and the spatial model opens in the Spatial Model Editor.
6. Replace the input shape file by double clicking on the Filename port of the Features Input operator.
7. Browse to the data directory. Select unclassified_land_cover_segments.shp. Click OK.
8. Replace the output shape file by double clicking on the Filename port of the Features Output operator.

Dismiss the Attention dialog by clicking No since we do not want to overwrite the updated training data.
9. Specify unclassified_land_cover_segments_w_attributes.shp as the output file. Click OK.

10. In the Spatial Modeler tab, click the Run button.

 The model runs, creating a shapefile output that has the computed metrics as its attributes.

11. Click File > Close > Close All Views to close all viewers.

12. Click File > New > 2D View to start a new 2D viewer.

13. Click File > Open > Vector Layer. Browse to the data directory.

14. Select unclassified_land_cover_segments_w_attributes.shp. Click OK.

15. Right click on the shapefile name in the Contents folder and select Display Attribute Table.
Exercise 1: Feature Classification

Task 4: Train the Machine Learning algorithm

For this exercise we will use the random forest algorithm to classify the features into the various land cover types. Prior to classification, the algorithm needs to be initialized with the training data. Initialization is the process of creating a machine intellect by training the machine learning algorithm.

1. Click File > Close > Close All Views to close all viewers.
2. Click File > New > Spatial Model Editor to open a new Spatial Model Editor window.
3. In the Operators panel, scroll down to the Input category and expand it. Select the Features Input operator and drag it onto the left side of the Editor.
4. Drag Select Attributes operator from the Feature Schema category in the Operators panel into the Editor.
5. Drag Initialize Random Forest operator from the Classification category in the Operators panel into the Editor.
6. Drag Machine Intellect Output operator from the Output category in the Operators panel into the Editor.
7. Connect the various operators in the Editor as shown below.
8. Double Click on the Filename port of the Features Input operator.
 We will be Initializing the Random Forest algorithm based on the training data that has the attributes we generated for doing the classification.

9. Browse to the data directory. Select land_cover_training_data_w-attributes.shp. Click OK.
 The feature to be used for initialization has to only have attributes that will be used for the initialization. If there are non-geometry attributes that will not be used in the initialization process, they need to be removed from the feature stream.
 The training data has two non-geometry attributes. We will use Select Attributes operator to select the attributes that will be used for the training.

10. Double Click on the AttributeNames port of the Select Attributes operator.

11. In the Select Attributes Dialog, select the attributes to be used for training as shown in the figure below. Click OK.
12. Double Click on the **AttributeName** port of the **Initialize Random Forest** operator. We will use the Name attribute of the training data as the Class name of the various land cover types.

13. In the **Input Text** dialog, enter "**Name**" as the value for **AttributeName**. Click **OK**

14. Double-click the **Filename** port of the **Machine Intellect Output** operator.

15. Browse to the data directory. Specify `rf_land_cover.miz` as the output File Name. Click **OK**
16. Click **File > Save > Spatial Model**. Name the model `init_rf.gmdx` and click **OK**.

17. In the **Spatial Modeler** tab, click the **Run** button.

 The model runs, creating the machine intellect that will be used in the next step for classification.

Task 5: Classify using Machine Intellect

In this task, we will create a spatial model that uses the machine intellect created in the step above to perform feature classification.

1. Click **File > Close > Close All Views** to close all viewers.

2. Click **File > New > Spatial Model Editor** to open a new Spatial Model Editor window.

3. In the **Operators** panel, scroll down to the **Input category** and expand it. Select the **Features Input** operator and drag it onto the left side of the Editor.

4. Drag **Machine Intellect Input** operator from the **Input** category in the **Operators** panel into the Editor.

5. Drag **Classify Using Machine Learning** operator from the **Classification** category in the **Operators** panel into the Editor.

6. Drag **Features Output** operator from the **Output** category in the **Operators** panel into the Editor.

7. Connect the various operators in the Editor as shown below.
8. Double Click on the **Filename** port of the **Features Input** operator.

9. Browse to the data directory. Select `unclassified_land_cover_segments_w_attributes.shp`. Click **OK**.

10. Double Click on the **Filename** port of the **Machine Intellect Input** operator.

11. Browse to the data directory. Select `rf_land_cover.miz`. Click **OK**.

12. Double-click the **FilenameIn** port of the **Features Output** operator.

13. Browse to the data directory. Specify `classified_segments.shp` as the output File Name. Click **OK**

14. Click **File > Save > Spatial Model**. Name the model `rf_land_cover_classifier.gmdx` and click **OK**.

15. In the **Spatial Modeler** tab, click the **Run** button.
The model runs, creating a shapefile with classified segments.

Task 6: Analyse the result

In this
1. Click **File > Close > Close All Views** to close all viewers.
2. Click **File > New > 2D View** to start a new 2D viewer.
3. Click **File > Open > Raster Layer.** Browse to the data directory.
4. Select **land_cover.img.** Click **OK.**
5. Click **File > Open > Vector Layer.** Browse to the data directory.
6. Select **land_cover_training_data_w_attributes.shp.** Click **OK.**
7. Click **File > New > 2D View** to start a new 2D viewer.
8. Click **File > Open > Raster Layer.** Browse to the data directory.
9. Select **land_cover.img.** Click **OK.**
10. Click **File > Open > Vector Layer.** Browse to the data directory.
11. Select **classified_segments.shp.** Click **OK.**
12. On the **Home** tab, **Extent** group, click the **Fit to Frame** button to see the full extent of the displayed data. Do this for both views.
Exercise 1: Feature Classification

You can make a visual analysis of the training data and the classified segments by displaying each class on both views.
Exercise 2: Raster Classification

Objective
Students will gain an understanding of the process involved in performing raster classification with machine learning operators. This includes:

- Preparing the training data
- Initializing the machine learning algorithm
- Performing the classification

Task 1: Explore the input dataset

In this task, we will get familiar with the data we will use for the exercise.

1. Start ERDAS IMAGINE.
2. Click File > Open > Raster Layer. Browse to the data directory.
3. Select land_cover.img. Click OK.
4. You may use Fit to Screen, Zoom and Pan tools to get a sense of the image contents.
5. This is the image we will attempt to classify in this exercise
6. Click File > Open > Vector Layer. Browse to the data directory.
7. Select land_cover_training_points.shp. Click OK.
8. Right click on the shapefile name in the Contents folder and select Display Attribute Table. Let's style the shapefile display by its Name attribute.
9. Click on the Style tab of the ribbon interface, then click on Unique Value button from the Categorization group.
10. Select Name attribute name from the Unique Value dialog to specify the attribute to be used for generating symbology.

We will use this shape file as our training data to classify the image.
Task 2: Prepare the training dataset

We have to decide which attributes of the training data to use to train the machine learning algorithm that will be used for the classification.

Since we are classifying the image, the DN values of the pixels will be used as the basis for classification.

Let’s first extract the DN value of the images at the training points and add a feature that has the DN values as an attribute, as an attribute to the shape file. We will do that by building a spatial model.

11. Click **File > Close > Close All Views** to close all viewers.
12. Click **File > New > Spatial Model Editor** to open a new Spatial Model Editor window.
13. In the **Operators** panel, scroll down to the **Input category** and expand it. Select the **Features Input** operator and drag it onto the left side of the Editor.
14. Drag **Raster Input** operator from the **Input category** in the **Operators** panel into the Editor.
15. Drag **Raster Statistics Per Features** from the **Zonal category** in the **Operators** panel into the Editor.
16. Drag **Features Output** operator from the **Output category** in the Operators panel into the Editor.
17. Click on the Raster Statistics Per Features operator and in the Properties panel check on the Show column for **ComputeMean** and **MeanAttributeBaseName** port. We will use the **Mean** as a proxy for the DN value (Since the mean of a single value is itself). We will change the name of the attribute to be created in the output feature stream to something that better reflects what we are creating.

Mean is computed by default (so is set to true),

Double click on the **MeanAttributeBaseName** port and change the value to **DNV_B** (DN Value). The output stream will have attributes DNV_B1,…, DNV_B4 since the image has 4 bands.

18. Connect the various operators in the Editor as shown below.

![Diagram of the workflow](image)

19. Click **File > Save > Spatial Model**. Name the model **Data_prep2.gmdx** and click **OK**.

20. In the **Spatial Modeler** tab, click the **Run** button.

The model runs, creating a shapefile output that has the computed metrics as its attributes.

21. Click **File > Close > Close Spatial Model Editor** to close the Spatial Model Editor window.

22. Click **File > New > 2D View** to start a new 2D viewer.

23. Click **File > Open > Vector Layer**. Browse to the data directory.

24. Select **land_cover_training_points_w_attributes.shp**. Click **OK**.

25. Right click on the shapefile name in the Contents folder and select **Display Attribute Table**.

Let’s style the shapefile display by its **Name** attribute.
We have now created a shape file that has the raster DN values at the points locations as an its attribute.

Task 4: Train the Machine Learning algorithm

For this exercise we will use the random forest algorithm to classify the features into the various land cover types. Prior to classification, the algorithm needs to be initialized with the training data. Initialization is the process of creating a machine intellect by training the machine learning algorithm.

1. Click File > Close > Close 2D View to close the 2D viewer.
2. Click File > New > Spatial Model Editor to open a new Spatial Model Editor window.
3. In the Operators panel, scroll down to the Input category and expand it. Select the Features Input operator and drag it onto the left side of the Editor.
4. Drag Select Attributes operator from the Feature Schema category in the Operators panel into the Editor.
5. Drag Initialize Random Forest operator from the Classification category in the Operators panel into the Editor.
6. Drag **Machine Intellect Output** operator from the **Output** category in the **Operators** panel into the Editor.

Connect the various operators in the Editor as shown below.

Double Click on the **Filename** port of the **Features Input** operator.

We will be Initializing the Random Forest algorithm based on the training data that has the attributes we generated for doing the classification.

Browse to the data directory. Select `land_cover_training_points_w_attributes.shp`. Click **OK**.

The feature to be used for initialization has to only have attributes that will be used for the initialization. If there are non-geometry attributes that will not be used in the initialization process, they need to be removed from the feature stream.

The training data has two non-geometry attributes. We will use **Select Attributes** operator to select the attributes that will be used for the training.

Double Click on the **AttributeName** port of the **Select Attributes** operator.

In the Select **Attributes Dialog**, select the attributes to be used for training as shown in the figure below. Click **OK**.
Double Click on the ClassAttributeName port of the Initialize Random Forest operator.

We will use the Name attribute of the training data as the Class name of the various land cover types.

In the Input Text dialog, enter “Name” as the value for ClassAttributeName. Click OK.

Double-click the FilenameIn port of the Machine Intellect Output operator.

Browse to the data directory. Specify rf_land_cover.miz as the output File Name. Click OK.
Click **File > Save > Spatial Model**. Name the model `init_rf.gmdx` and click **OK**.

In the **Spatial Modeler** tab, click the **Run** button.

The model runs, creating the machine intellect that will be used in the next step for classification.
About Us

Hexagon Geospatial helps you make sense of the dynamically changing world. We enable you to envision, experience and communicate geographic information. Our technology provides you the form to design, develop and deliver solutions that solve complex, real-world challenges. Ultimately, this is realized through our creative software products and platforms.

CUSTOMERS. Globally, a wide variety of organizations rely on our products daily including local, state and national mapping agencies, transportation departments, defense organizations, engineering and utility companies, and businesses serving agriculture and natural resource needs. Our portfolio enables these organizations to holistically understand change and make clear, reliable decisions.

TECHNOLOGY. Our priority is to deliver products, platforms and solutions that make our customers successful. Hexagon Geospatial is focused on developing technology that displays and interprets information in a personalized, meaningful way. We enable you to transform location-based content into dynamic and useable business information that creatively conveys the answers you need.

PARTNERS. As an organization, we are partner-focused, working alongside our channel to ensure we succeed together. We provide the right platforms, products, and support to our business partners so that they may successfully deliver sophisticated solutions for their customers. We recognize that we greatly extend our reach and influence by cultivating channel partner relationships both inside and outside of Hexagon.

TEAM. As an employer, we recognize that the success of our business is the result of our highly motivated and collaborative staff. At Hexagon Geospatial, we celebrate a diverse set of people and talents, and we respect people for who they are and the wealth of knowledge they bring to the table. We retain talent by fostering individual development and ensuring frequent opportunities to learn and grow.

HEXAGON. Hexagon’s solutions integrate sensors, software, domain knowledge and customer workflows into intelligent information ecosystems that deliver actionable information. They are used in a broad range of vital industries.

Hexagon (Nasdaq Stockholm: HEXA B) has approximately 18,000 employees in 50 countries and net sales of approximately 3.3 bn USD. Learn more at hexagon.com and follow us @HexagonAB.
Copyright and Terms of Use

Copyright

© 2017 Hexagon AB and/or its subsidiaries and affiliates. All rights reserved. Hexagon has registered trademarks in many countries throughout the world. Visit the Trademarks Page for information about the countries in which the trademarks are registered. See Product Page and Acknowledgments for more information.

Product Documentation Terms of Use

PLEASE READ THESE TERMS CAREFULLY BEFORE USING HEXAGON GEOSPATIAL’S DOCUMENTATION ("DOCUMENT"). USE OF THIS DOCUMENT INDICATES ACCEPTANCE OF THIS AGREEMENT WITHOUT MODIFICATION. IF YOU DO NOT AGREE TO THE TERMS HEREOF ("TERMS"), DO NOT USE THIS DOCUMENT.

Use Of This Document

All materials in this Document are copyrighted and any unauthorized use may violate worldwide copyright, trademark, and other laws. Subject to the terms of this Agreement, Hexagon Geospatial (a Division of Intergraph Corporation) and Intergraph’s subsidiaries ("Intergraph") hereby authorize you to reproduce this Document solely for your personal, non-commercial use. In consideration of this authorization, you agree to retain all copyright and other proprietary notices contained therein. You may not modify the Materials in any way or reproduce or publicly display, perform, or distribute or otherwise use them for any public or commercial purpose, except as specifically authorized in a separate agreement with Hexagon Geospatial.

The foregoing authorization specifically excludes content or material bearing a copyright notice or attribution of rights of a third party. Except as expressly provided above, nothing contained herein shall be construed as conferring by implication, estoppel or otherwise any license or right under any copyright, patent or trademark of Hexagon Geospatial or Intergraph or any third party.

If you breach any of these Terms, your authorization to use this Document automatically terminates. Upon termination, you will immediately destroy any downloaded or printed Materials in your possession or control.

Disclaimers

ALL MATERIALS SUPPLIED HEREUNDER ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. Hexagon Geospatial does not warrant that the content of this Document will be error-free, that defects will be corrected, or that any Hexagon Geospatial Website or the services that make Materials available are free of viruses or other harmful components.

Hexagon Geospatial does not warrant the accuracy and completeness of this Document. Hexagon Geospatial may make changes to this Document at any time without notice.
Limitation Of Liability
IN NO EVENT SHALL HEXAGON GEOSPATIAL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES, OR DAMAGES FOR LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY YOU OR ANY THIRD PARTY, WHETHER IN AN ACTION IN CONTRACT OR TORT, ARISING FROM YOUR ACCESS TO, OR USE OF, THIS DOCUMENT.

Indemnification
You agree to defend, indemnify, and hold harmless Hexagon Geospatial, its officers, directors, employees, and agents from and against any and all claims, liabilities, damages, losses or expense, including reasonable attorneys’ fees and costs, arising out of or in any way connected with your access to or use of this Document.

Use Of Software
Use of software described in this Document is subject to the terms of the end user license agreement that accompanies the software, if any. You may not download or install any software that is accompanied by or includes an end user license agreement unless you have read and accepted the terms of such license agreement. Any such software is the copyrighted work of Hexagon Geospatial, Intergraph or its licensors. Portions of the user interface copyright 2012-2017 Telerik AD.

Links To Third Party Websites
This Document may provide links to third party websites for your convenience and information. Third party websites will be governed by their own terms and conditions. Hexagon Geospatial does not endorse companies or products to which it links.

Third party websites are owned and operated by independent parties over which Hexagon Geospatial has no control. Hexagon Geospatial shall not have any liability resulting from your use of the third party website. Any link you make to or from the third party website will be at your own risk and any information you share with the third party website will be subject to the terms of the third party website, including those relating to confidentiality, data privacy, and security.

Trademarks
The trademarks, logos and service marks ("Marks") displayed in this Document are the property of Hexagon Geospatial, Intergraph or other third parties. Users are not permitted to use Marks without the prior written consent of Hexagon Geospatial, Intergraph or the third party that owns the Mark. "Intergraph" is a registered trademark of Intergraph Corporation in the United States and in other countries. Other brands and product names are trademarks of their respective owners.

Find additional trademark information.

Procedure For Making Claims Of Copyright Infringement
Notifications of claimed copyright infringement should be sent to Hexagon Geospatial by mail at the following address: Intergraph Corporation, Attn: Intergraph Legal Department, P.O. Box 240000, Huntsville, Alabama 35824.
US Government Restricted Right

Materials are provided with "RESTRICTED RIGHTS." Use, duplication, or disclosure of Materials by the U.S. Government is subject to restrictions as set forth in FAR 52.227-14 and DFARS 252.227-7013 et seq. or successor provisions thereto. Use of Materials by the Government constitutes acknowledgment of Hexagon Geospatial or Intergraph's proprietary rights therein.

International Use

You may not use or export Materials in violation of U.S. export laws and regulations. Hexagon Geospatial makes no representation that Materials are appropriate or available for use in every country, and access to them from territories where their content is illegal is prohibited.

Hexagon Geospatial provides access to Hexagon Geospatial international data and, therefore, may contain references or cross references to Hexagon Geospatial products, programs and services that are not announced in your country. These references do not imply that Hexagon Geospatial intends to announce such products, programs or services in your country.

The Materials are subject to U.S. export control and economic sanctions laws and regulations and you agree to comply strictly with all such laws and regulations. In addition, you represent and warrant that you are not a national of, or otherwise located within, a country subject to U.S. economic sanctions (including without limitation Iran, Syria, Sudan, Cuba, and North Korea) and that you are not otherwise prohibited from receiving or accessing the Materials under U.S. export control and economic sanctions laws and regulations. Hexagon Geospatial makes no representation that the Materials are appropriate or available for use in every country, and access to them from territories where their content is illegal is prohibited. All rights to use the Materials are granted on condition that such rights are forfeited if you fail to comply with the terms of this agreement.

Revisions

Hexagon Geospatial reserves the right to revise these Terms at any time. You are responsible for regularly reviewing these Terms. Your continued use of this Document after the effective date of such changes constitutes your acceptance of and agreement to such changes.

Applicable Law

This Document is created and controlled by Hexagon Geospatial in the State of Alabama. As such, the laws of the State of Alabama will govern these Terms, without giving effect to any principles of conflicts of law. You hereby irrevocably and unconditionally consent to submit to the exclusive jurisdiction of the United States District Court for the Northern District of Alabama, Northeastern Division, or the Circuit Court for Madison County, Alabama for any litigation arising out of or relating to use of this Document (and agree not to commence any litigation relating thereto except in such courts), waive any objection to the laying of venue of any such litigation in such Courts and agree not to plead or claim in any such Courts that such litigation brought therein has been brought in an inconvenient forum. Some jurisdictions do not allow the exclusions or limitations set forth in these Terms. Such exclusions or limitations shall apply in all jurisdictions to the maximum extent allowed by applicable law.

Questions

Contact us with any questions regarding these Terms.